Processing efficiency of divided spatial attention mechanisms in human visual cortex.
نویسندگان
چکیده
Many visual tasks require deployment of attention to multiple objects or locations. We used functional magnetic resonance imaging and behavioral experiments to investigate the relative processing efficiency of two putative attentional mechanisms for performing such tasks: the "zoom lens" and "multiple spotlights." Two key questions were investigated: (1) does splitting the spotlight into multiple foci incur an overhead cost that diminishes the efficacy of attention compared with the zoom lens, and (2) does splitting the spotlight provide a benefit relative to the zoom lens by conserving attention resources that otherwise would be directed to task irrelevant stimuli? For both mechanisms, attending to multiple object locations decreased processing efficiency at a single location, resulting in both decreased behavioral performance and decreased blood oxygenation level-dependent (BOLD) signal attentional modulation. When the two mechanisms attended to multiple objects across the same spatial extent, the multiple spotlight mechanism, which ignores intervening stimuli, yielded better performance and higher BOLD signal. When the two mechanisms processed the same number of stimuli, splitting the spotlight neither impaired performance nor diminished BOLD signal in occipital cortex. The surprising efficiency of the multiple spotlight mechanism supports the emerging view that spatial attention is easily deployed in a diverse range of spatial configurations.
منابع مشابه
Evidence for unlimited capacity processing of simple features in visual cortex
Performance in many visual tasks is impaired when observers attempt to divide spatial attention across multiple visual field locations. Correspondingly, neuronal response magnitudes in visual cortex are often reduced during divided compared with focused spatial attention. This suggests that early visual cortex is the site of capacity limits, where finite processing resources must be divided amo...
متن کاملAn fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli
ABSTRACT Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF). Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd. Results: Average percentage BOLD signa...
متن کاملIntegrating electrophysiology and neuroimaging of spatial selective attention to simple isolated visual stimuli
Visual-spatial attention involves modulations of activity in human visual cortex as indexed by electrophysiological and functional neuroimaging measures. Prior studies investigating the time course and functional anatomy of spatial attention mechanisms in visual cortex have used higher-order discrimination tasks with complex stimuli (e.g. symbol matching in bilateral stimulus arrays, or letter ...
متن کاملNeural mechanisms of visual selective attention.
Visual selective attention improves our perception and performance by modifying sensory inputs at an early stage of processing. Spatial attention produces the most consistent early modulations of visual processing, which can be observed when attention is voluntarily allocated to locations. These effects of spatial attention are similar when attention is cued in a trial-by-trial, or sustained, f...
متن کاملDirecting attention to a location in space results in retinotopic activation in primary visual cortex.
It is well-known that directing attention to a location in space enhances the processing efficiency of stimuli presented at that location. Previous studies have shown that directing spatial attention manifests itself as an increase in spontaneous firing rate of neurons (the baseline signal) in extrastriate cortex at the retinotopic corresponding location. There has been considerable debate as t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 41 شماره
صفحات -
تاریخ انتشار 2005